Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The GEOTRACES program has greatly expanded measurements of dissolved trace metal concentrations across ocean basins, but to understand the behavior and cycling of metals and their impacts on primary productivity, we must understand the chemical forms in which they are present in the environment. Organic ligands play a central role in the speciation and cycling of trace metals in the marine environment, controlling their chemical reactivity and bioavailability. Here, we present an overview of the contributions the GEOTRACES program has made to understanding ocean metal speciation through advancing our knowledge of the distribution, sources, and sinks of metal-binding organic ligands across the global ocean, particularly for iron. Detailed assessments and intercalibration of the speciation methods most commonly applied have allowed integration of metal-binding ligand measurements across datasets. Work to characterize specific ligand groups within the wider pool of dissolved organic matter, along with their sources and sinks, is starting to unravel the role of metal-binding organic ligands in global biogeochemical cycles. Recent advances in complementary analytical techniques using liquid chromatography and mass spectrometry present a molecular picture of metal speciation and bioavailability—and also pose new questions. Moving forward, we need to address knowledge gaps in our understanding of how metal speciation and complexation relates to bioavailability in order to recognize the impacts of ocean metal distributions and cycling on marine productivity and the global carbon cycle.more » « less
-
Abstract We present a new approach for quantifying the bioavailability of dissolved iron (dFe) to oceanic phytoplankton. Bioavailability is defined using an uptake rate constant (kin‐app) computed by combining data on: (a) Fe content of individual in situ phytoplankton cells; (b) concurrently determined seawater dFe concentrations; and (c) growth rates estimated from the PISCES model. We examined 930 phytoplankton cells, collected between 2002 and 2016 from 45 surface stations during 11 research cruises. This approach is only valid for cells that have upregulated their high‐affinity Fe uptake system, so data were screened, yielding 560 single cellkin‐appvalues from 31 low‐Fe stations. We normalizedkin‐appto cell surface area (S.A.) to account for cell‐size differences. The resulting bioavailability proxy (kin‐app/S.A.) varies among cells, but all values are within bioavailability limits predicted from defined Fe complexes. In situ dFe bioavailability is higher than model Fe‐siderophore complexes and often approaches that of highly available inorganic Fe′. Station averagedkin‐app/S.A. are also variable but show no systematic changes across location, temperature, dFe, and phytoplankton taxa. Given the relative consistency ofkin‐app/S.A. among stations (ca. five‐fold variation), we computed a grand‐averaged dFe availability, which upon normalization to cell carbon (C) yieldskin‐app/C of 42,200 ± 11,000 L mol C−1 d−1. We utilizekin‐app/C to calculate dFe uptake rates and residence times in low Fe oceanic regions. Finally, we demonstrate the applicability ofkin‐app/C for constraining Fe uptake rates in earth system models, such as those predicting climate mediated changes in net primary production in the Fe‐limited Equatorial Pacific.more » « less
An official website of the United States government
